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Optimal colored perceptrons
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Ashkin-Teller type perceptron models are introduced. Their maximal capacity per number of couplings is
calculated within a first-step replica-symmetry-breaking Gardner approach. The results are compared with
extensive numerical simulations using several algorithms.
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I. INTRODUCTION

The perceptron that was first analyzed with statistical m
chanics techniques in the seminal paper of Gardner@1# is by
now a well-known and standard model in theoretical stud
and practical applications in connection with learning a
generalization@2–5#. A number of extensions of the perce
tron model have been formulated, including many-state
graded-response perceptrons~e.g.,@6–11#!. Here we presen
some new extensions allowing for so-called colored
Ashkin-Teller type neurons, i.e., different types of bina
neurons at each site possibly having different functions.

The idea of looking at such a model is based upon
recent work on Ashkin-Teller recurrent neural networ
@12,13#. There we showed that for this model with two typ
of binary neurons interacting through a four-neuron term a
equipped with a Hebb learning rule, both the thermodyna
and dynamic properties suggest that such a model ca
more efficient than a sum of two Hopfield models. For e
ample, the quality of pattern retrieval is enhanced throug
larger overlap at higher temperatures and the maximal ca
ity is increased. For more details and an underlying neu
biological motivation for the introduction of different type
of neurons we refer to@13#.

In the light of these results an interesting question
whether such a colored perceptron can still be more effic
than the standard perceptron. In other words, can it hav
larger maximal capacity than the one of a standard perc
tron, which is known@1# to beac52 ~for random uncorre-
lated patterns!. It has been suggested that this number
characteristic for all binary networks independent of the m
tiplicity of the neuron interactions. Thereby, the capacity
defined as the thermodynamic limit of the ratio of the to
number of bits per~input! neuron to be stored and the tot
number of couplings per~output! neuron@8#. We remark that
‘‘input’’ and ‘‘output’’ refer specifically to the perceptron
case.

In the sequel the maximal capacity of colored percept
models is studied using the Gardner approach@1,14#. The
main advantage of this approach is that in order to determ
this maximal capacity, there is no need to specify explic
the optimal set of couplings for which, this maximum i
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reached. First-step replica-symmetry-breaking effects
evaluated and the analytic results are compared with ex
sive numerical simulations using various learning alg
rithms.

The rest of this paper is organized as follows. In Sec
we introduce two Ashkin-Teller type perceptron mode
Section III contains the replica theory and determines
maximal capacity by calculating the available volume in t
space of couplings both in the replica-symmetric~Sec. III A!
and the first-step replica-symmetry-breaking approximat
~Sec. III B!. Section IV describes the results of numeric
simulations with algorithms obtained by generalizing vario
algorithms for simple perceptrons. In Sec. V we present
conclusions. Finally, two appendices contain some techn
details of the derivations.

II. THE MODEL

Let us first formulate the colored perceptron models. W
considerp input patternszm5$z i

m%5$j i
m ,h i

m%, i 51, . . . ,N
consisting of two different types of patternsjm5$j i

m% and
hm5$h i

m%, and a corresponding set of outputsz0
m

5$j0
m ,h0

m% m51, . . . ,p that are determined by

j0
m5sgn~h1

m1h0
mh3

m!, ~1!

h0
m5sgn~h2

m1j0
mh3

m!, ~2!

j0
mh0

m5sgn~h0
mh1

m1j0
mh2

m!, ~3!

wherehr (r 51,2,3) are the local fields acting on the patter
j, h, and their productjh, respectively,

h1
m5

1

n1
(

i
Ji

(1)j i
m , h2

m5
1

n2
(

i
Ji

(2)h i
m , ~4!

h3
m5

1

n3
(

i
Ji

(3)j i
mh i

m , nr
25(

i
~Ji

(r )!2, r 51,2,3.

~5!

Both types of input patterns and their corresponding outp
are supposed to be independent identically distributed
dom variables taking the values11 or 21 with probability
1/2.

The set of three equations~1!–~3! defines a mapping o
the inputszi

m onto the corresponding outputsz0
m . We call it

model I. The specific form of these equations is related to
transition probabilities for a spin flip in the dynamics$see the
expressions~9! in @12#%. Although for the Hebb learning rule
©2001 The American Physical Society15-1
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the spin-flip dynamics defined by all three or only two
these transition probabilities lead to the same equilibri
properties, this is not necessarily the case for the opti
couplings. Therefore, a second model, denoted by II, is
fined by considering only the two equations~1! and ~2!.
Whenuh3u.uh1u anduh3u.uh2u then the relations~1!–~2! are
satisfied by two~out of the four possible! values of the out-
put z0, otherwise model II gives the same output as mode
In other words, due to the presence of theh0

m andj0
m in the

gain functions, model II contains more freedom and, stric
speaking, it is not a mapping. This additional freedom ari
from the weaker constraints imposed on the couplings s
that their available space is systematically larger. So, w
the available volume of the coupling space for model I
ready shrinks to zero, the one for model II may still be fini
Therefore, we expect that model II allows for a bigger c
pacity.

At this point we remark that when allJi
(3) are equal to

zero we find back two independent standard binary perc
tron models. In the sequel we take the couplings to sat
the spherical constraintnr5AN.

III. REPLICA THEORY FOR THE MAXIMAL CAPACITY

The colored perceptron is trained to store correc
p5 3

2 aN patterns witha the loading capacity. The factor 3/
follows naturally from the definition of capacity given in th
introduction. A pattern is stored correctly when the so-cal
aligning field @15# is bigger than a certain constantk>0
whereby the latter indicates the stability. It is a measure
the size of the basin of attraction of that pattern. Specifica
we require that

lj
m~$J%!5j0

m~h1
m1h0

mh3
m!.kj>0, ~6!

lh
m~$J%!5h0

m~h2
m1j0

mh3
m!.kh>0, ~7!

ljh
m ~$J%!5~j0

mh1
m1h0

mh2
m!.kjh>0, ~8!

with $J%5$Ji
(r )% denoting the configurations in the space

interactions. Forkj5kh5kjh50 all patterns that satisfy
equations~1!–~3! also satisfy Eqs.~6!–~8!. We remark that
for model II the last inequality is superfluous.

The aim is then to determine the maximal value of t
loading a for which couplings satisfying Eqs.~6!–~8! can
still be found. In particular, the question whether this mo
can be more efficient than the existing two-state model
relevant.

Following Refs.@1,14# we formulate the problem as a
energy minimization in the space of couplings with the fo
mal energy function defined as

E~$J%!5(
m

„12Q@lj
m~$J%!2kj#Q@lh

m~$J%!2kh#

Q@ljh
m ~$J%!2kjh#…. ~9!

We remark that for model II the thirdQ factor is absent. The
quantity above counts the number of weakly embedded
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terns, i.e., the patterns with stability less thankj ,kh ,kjh .
Therefore, the minimal energy gives the minimal number
patterns that are stored incorrectly. This number is zero
low a maximal storage capacityac(kj ,kh ,kjh).

The basic quantity to start from is the partition function

Z~b!5^exp@2bE~$J%!#&$J% ~10!

^•••&$J%5E )
i

dJi)
r

dF(
i

~Ji
(r )!22NG•••, ~11!

with b the inverse temperature. As usual it is lnZ, which is
assumed to be a self-averaging extensive quantity@1,15#.
The related free energy per site

f 52 lim
N→`

1

Nb
ln Z~b! ~12!

is equal, in the limitb→`, to

^E&`

N
[ lim

b→`

^E~$J%!exp@2bE~$J%!#&$J%

NZ~b!
, ~13!

which is the minimal fraction of wrong patterns@recall Eq.
~9!#.

In order to perform the average over the disorder in
input patternszm and the corresponding outputsz0

m we em-
ploy the replica method. The calculations proceed in a st
dard way although the technical details are much more c
plex. Introducing the order parameters qgt

(r )

5(1/N)( iJi
(r )gJi

(r )t , with r 51,2,3 andg,t51, . . . ,n we
write following @1#,

^Zn~b!&5E )
r ,g,t.g

S dqgt
(r )dfgt

r

2p/N D)
r ,g

deg
r

2p

3expNH 3

2
aG0~qgt

(r )!1 (
r ,g,t.g

iqgt
(r )fgt

r

1G1~fgt
r ,eg

r !J , ~14!

G05 lnH)
g

S Fe2bE )
r 8

dl r 8g

2p
1~12e2b!

3E
kj

`E
kh

` E
kjh

`

)
r 8

dl r 8g

2p G E )
r 8

dxr 8g

3expH (
r 8

ixr 8gl r 8g2
1

2
@~x1g1x3g!21~x2g1x3g!2

1~x1g1x2g!2#2 (
t.g

@~x1g1x3g!~x1t1x3t!qgt
(1)

1~x2g1x3g!~x2t1x3t!qgt
(2)1~x1g1x2g!

3~x1t1x2t!qgt
(3)#J D J
5-2
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G15 lnH E )
r ,g

~dJ(r )g!expF i(
r ,g

eg
r ~~J(r )g!221!

2 i (
r ,g,t.g

fgt
r J(r )gJ(r )tG J ,

where ^ . . . & denotes the average over the patter
r 851,2,3 for model I and 1,2 for model II. Because of t
latter we remark that for model II the formula forG0 can be
simplified: the integrals with respect tol3g andx3g are not
present and thusx3g, x3t, and l3g have to be set to zero
Because of this simplification we only outline explicitly th
calculations for model II in the sequel. The correspond
formulas for model I can be found in Appendix B.

A. Replica symmetric ansatz

We continue by making the replica-symmetric~RS! an-
satz qgt

(r )5q(r ),fgt
r 5 if r ,eg

r 5 i e r . Moreover, for conve-
nience, we setq(1)5q(2)5q(3)5q. The latter is justified for
model I because of the symmetry present in this model. F
thermore, since we are going to take allq(r )→1 in the
Gardner-Derrida analysis anyway, we keep this equality a
for model II. Taking then the limitsb→`, N→`, and n
→0 we arrive, in the case of model II, at

v5 lim
N→`

1

N
^ ln Z&

5
3

2
aE D@s1~q/2!#D@s2~3q/2!# ln cRS~kj ,kh ,s1 ,s2 ,q!

1
3

2 F ln~12q!1
1

12q
1 ln 2pG ~15!
in
d
w

g
in

e

ac

01191
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cRS~kj ,kh ,s1 ,s2 ,q!5E
l 1

`E
l 2

l 3

)
n

D@sn~1!# ~16!

wheren51,2, D@s(y)#5ds exp(21/2ys2)/A2py is a modi-
fied Gaussian measure,

l 15

A2

3F1

2
~kj1kh!2s2G
A12q

, ~17!

l 25
A2~kh2s22s1!

A12q
2u2A3, ~18!

l 35
A2~2kj1s22s1!

A12q
1u2A3, ~19!

andq takes those values that minimizev, the available vol-
ume in the space of couplings. For the corresponding exp
sion in the case of model I we refer to Appendix B.

Taking kj5kh5k and supposing that the maximal c
pacity, ac5aRS, is signaled by the Gardner-like criterio
q→1, we obtain
aRS~k!5 lim
q→1H 2 ln~12q!2

1

12q
2 ln 2p

E D~s1~q/2!!D~s2~3q/2!!ln cRS~k,k,s1 ,s2 ,q!
J . ~20!
ly-
ng
This maximal capacity as a function ofk is shown for both
models in Figs. 1 and 2 as a full line. For model I we obta
e.g.,aRS(k50)51.92, a value that is smaller than the Gar
ner capacity for the simple perceptron. For model II ho
ever, we get the interesting result thataRS(k50)52.74.2.

B. First-step replica symmetry breaking

It is straightforward to show geometrically that learnin
almost antiparallel patterns, i.e., patterns satisfy
(jmj0

m ,hmh0
m)'2(jnj0

n ,hnh0
n) results in a splitting of the

space of couplings into disconnected regions. This sugg
that RS is broken and, consequently, the results foraRS
found in Sec. III A are only upperbounds for the true cap
,
-
-

g

sts

-

ity. Therefore, we want to improve the RS results by app
ing the first step of Parisi’s replica-symmetry-breaki
~RSB! scheme~e.g.,@21#!. So, we assume that theqgt

(r ) in Eq.
~14! have the following matrix block structure

qgt
(r )5H q1

(r ) if int S ~g21!m

n D5 intS ~t21!m

n D
q0

(r ) otherwise,

~21!

wheren is the size of the matrixqgt
(r ) , m is the number of

diagonal blocks, and int(x) denotes the integer part ofx.
For model II we takeqgt

(1)5qgt
(2)Þqgt

(3) reflecting the sym-
metry of this model. For model I we repeat that allq(r )’s can
5-3
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be taken equal. We then consider the limitsq1
(r )→1 andn→0 in such a way thatm/(12q1), with q1

(1)5q1
(2)5q1

(3)5q1,
remains finite. After a tedious calculation we arrive at the following expression for the RSB1 maximal capacity for m

aRSB1~k!5 min
q0

(1) ,q0
(3) ,M5 2

2

3 F ln~11M !1
q0

(1)M

~11M !~12q0
(1)!

1
1

2
ln~11M3!1

1

2

q0
(3)M

~11M3!~12q0
(1)!

G
E Dt1Dt2ln cRSB1~k,t1 ,t2 ,q0

(1) ,q0
(3) ,M ! 6 ~22!
e
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r 35
12q0

(3)

12q0
(1)

, M35Mr 3 , M5
m~12q0

(1)!

12q1
, ~23!

and Dt i5dt iexp@2(1/2)t i
2#/A2p a Gaussian measure. Th

explicit form of the functioncRSB1(k,t1 ,t2 ,q0
(1) ,q0

(3) ,M )
can be found in Appendix A. An analogous form for mode
is written down in Appendix B.

The results are presented in Figs. 1 and 2 as full lines
expected they lie below the RS results confirming the bre
ing of RS, e.g.,aRSB1(k50)51.83 for model I and 2.28 for
model II. We remark that the breaking for model II is stro
ger than for model I, the reason being that model II allo
more freedom as explained in the introduction. Finally,
the basis of results in the literature for the simple percept
@15#, @16# we expect that the RSB1 results are very close
the exact ones. This is further examined by performing
merical simulations as described in the following section

IV. NUMERICAL SIMULATIONS

The idea of these simulations is to train the network w
a certain learning algorithm in order to learn as many r
dom patterns as possible. The main technical difficulties
to find an efficient algorithm and prove its convergence.

We have tried to generalize various algorithms propo
for simple perceptrons@17–20#. The most effective ones ap
peared to be some particular generalization of the adap
Gardner algorithm@18# and the Adatron algorithm@19#. In
the sequel we only report on the results obtained with th
two algorithms. We remark that we have chosenkj5kh
5kjh5k in all simulations.

One of the algorithms that has demonstrated its efficie
and for which convergence has been shown in the case o
standard perceptron is given in Ref.@18#. It is an adaptive
version of the original algorithm proposed by Gardner@1#.
Using heuristic arguments presented in@18# we have con-
structed for the coloured perceptron model II the followi
analogous learning rule

Ji
(1)→Ji

(1)1j0
mj i

m 1
2 ~kj2lj

m!Q~kj2lj
m!, ~24!

Ji
(2)→Ji

(2)1h0
mh i

m 1
2 ~kh2lh

m!Q~kh2lh
m!, ~25!
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Ji
(3)→Ji

(3)1j0
mh0

mj i
mh i

m 1
2 @~kj2lj

m!Q~kj2lj
m!

1~kh2lh
m!Q~kh2lh

m!#. ~26!

The form of the algorithm for model I is a bit different an
given in Appendix B. This algorithm should be carried o
sequentially over the patterns and sequentially or para
over the couplings as long as one of the arguments of thQ
functions is positive. It appears to have the characteristic
the most efficient, nonlinear algorithm discussed in@18#.

Using this learning rule we have trained networks of siz
50<N<1000 sites~depending on the value ofk) in order to
store perfectly as many randomly chosen patterns as
sible. For each value ofk we have calculated the maxima
capacity for differentN and extrapolated the results toN
5`. Results for a given value ofk andN are averages ove
1000 samples. As shown in Figs. 1 and 2 this algorit
performs especially well for small values ofk for both the
models I and II.

The second algorithm we report on is the Adatron alg
rithm @19# that works in a different way. Instead of searchin
the maximal capacity for a given stability it tries to find th
maximal stability for a given capacity. The derivation of th
algorithm and a proof of its convergence are based upon
assumption that the problem can be formulated as a quad
optimization with linear constraints@19,7#. Such a formula-
tion cannot be given for the colored perceptron model,
cause the three different types of couplings have to be n
malized independently and because the stability conditi
~6!–~7! are more complex. Hence, a straightforward gen
alization similar to the one for the Potts model@7# is not
possible. Below we describe a learning rule that tries to
corporate the ideas of the Adatron approach. We assume
the couplings can be written in the form~cfr., @19# and ref-
erences therein!

Ji
(1)5

1

N (
m

x1
mj0

mj i
m , Ji

(2)5
1

N (
m

x2
mh0

mh i
m ,

Ji
(3)5

1

N (
m

x3
mj0

mh0
mj i

mh i
m , ~27!

wherexr
m (r 51,2,3) are the so-called embedding streng

of patternm. Then, in the case of model II the couplings a
updated by modifyingxr

m with the following increments

dx1
m5 1

2 max$2x1
m2x3

m ,g~12n1lj
m!%, ~28!
5-4
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dx2
m5

1

2
max$2x2

m2x3
m ,g~12n2lh

m!%, ~29!

dx3
m5

1

4
~max$2x1

m2x3
m ,g~12n3lj

m!%

1max$2x2
m2x3

m ,g~12n3lh
m!%!. ~30!

This is done sequentially over the patterns. We remark
again the algorithm for model I is somewhat different~see
Appendix B!. For each value of the capacity we have co
sidered system sizes 50<N<500 and extrapolated the re
sults toN5`. The best results were obtained for a learni
rategP(0,2). Results for each size are averages over 1
samples. For small values of the capacity the algorithm gi
better results, both in the case of models I and II than the
algorithm we have discussed, as shown in Figs. 1 and 2.
larger values of the capacity, however, it performs wor
The results for the Adatron algorithm are displayed only
the region where they are better than the results for the G
ner algorithm. We remark that the numerical simulatio
with the different algorithms give different results and th
we have not shown their convergence analytically such t
in principle, the values forac obtained here are lowe
bounds.

Looking at Figs. 1 and 2 in more detail we see that
the whole range ofk the values of the maximal capacit
in model II are larger than those of a standard bin
perceptron. Fork50, e.g., the simulations giveac52.26
60.01, which is bigger than the maximal capacity of t
binary perceptron model@1# and the binary many-neuron in

FIG. 1. The maximal capacity of the colored perceptron mod
as a function ofk. Theoretical results foraRS andaRSB1 are indi-
cated by the thick solid lines. The circles are the results of
simulations for the adaptive Gardner algorithm, the diamonds
the Adatron algorithm. The error bars are smaller than the siz
the symbols~not in the inset!. The solid thin lines are polynomia
fits to these results. The maximal capacity of a simple perceptro
indicated with a broken line.
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teraction model@8#, both of which haveac52. For model I
the maximal capacity atk50 found by simulations is 1.78
60.01.

V. CONCLUDING REMARKS

In this work we have calculated the maximal capac
per number of couplings for two colored perceptr
models. Compared with the standard perceptron th
models have two neuronal variables per site and a lo
field that contains higher order neuron terms. The meth
used is a generalization of the Gardner approach and
the RS and RSB1 results have been discussed. We ex
that the latter give very close upperbounds for the ex
values.

Extensive numerical simulations have been performed
finite systems and extrapolated toN5`. The adaptive Gard-
ner algorithm and the Adatron algorithm give the best, b
different results. Hence, the results of the simulations can
considered only as lower bounds for the exact maximal
pacity. Additional work looking for improved algorithm
would be welcome.

Comparing both the RSB1 results and the results fr
numerical simulations we conclude that they are in go
agreement. For bigger values ofk they even completely
coincide. For model I we find that atk50 the maximal
capacity satisfies 1.78<ac<1.83. This suggests that it i
equal to the maximal capacity of theQ5four-Potts percep-
tron, i.e.,ac51.83 ~after appropriate rescaling of the latte
@7#!. This would parallel the situation for Hebb learning@13#.
For model II we have fork50 that 2.26<ac<2.28, which
is larger than the maximal capacity of the standard bin
perceptron. Furthermore, as anticipated, the maxim
capacity of model II is larger than that of model I for a
values ofk.
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APPENDIX A: TECHNICAL DETAILS FOR MODEL II

The functioncRSB1(k,t1 ,t2 ,q0
(1) ,q0

(3) ,M ) in formula ~22! reads

cRSB1~k,t1 ,t2 ,q0
(1) ,q0

(3) ,M !5
1

2c1
e«3E

2`

c1/c(u11d3)

DsF11erfHA 3r

2c2S x3

A3r
2d31

c

c1
sD J G1

1

2c1
e«2E

2`

c1/c(u12d2)

3DsF11erfHA 3r

2c2S 2
x2

A3r
1d21

c

c1
sD J G1

1

2c2
ef2E

2`

2c2/c(u12g2)

DsF11erfHA 3r

2c2

3S x2

A3r
2g21

c

c2
sD J G1

1

2c2
ef3E

2`

2c2/c(u12g3)

DsF11erfHA 3r

2c2S 2
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A3r
2g3

1
c
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1

2c8
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lt-
ruc-
ions

RS
with Ds a Gaussian measure and

c5A11M , c85A11M1, c15A11M ~113r !,

c25AM1c21c1
2, M15rM , r 5

12q18

12q0
(1)

,

x25A3ru12t2A q0
(1)

12q0
(1)

, x352A3ru12t2A q0
(1)

12q0
(1)

,

«252
1

2

Mx2
2

c1
2

, «352
1

2

Mx3
2

c1
2

, d15
1

2
u1b1 ,

f252
1

2c2
2 @Mx2

2~c8!21M1u1
2c1

222MM1A3ru1x2#,

f352
1

2c2
2 @Mx3

2~c8!21M1u1
2c1

212MM1A3ru1x3#,

d25
A3rMx2

c1
2

, d35
A3rMx3

c1
2

, b152
M1u1

~c8!2
,

g25
1

c2
2 @M1u1c21MA3rx2#,

g35
1

c2
2 @M1u1c22MA3rx3#,
01191
u152

A2

3
k1Aq18t1

A12q18
, q185

1

3
q0

(1)1
2

3
q0

(3) ,

k5kj5kh .

APPENDIX B: FORMULA FOR MODEL I

For model I the calculations are very similar. Some resu
ing expressions, however, have a somewhat different st
ture. For completeness we write down these express
here.

For the available space of couplings we get in the
approximation@compare Eq.~15!#

v5 3
2 aE )

r
D@sr~q!# ln@cRS~kj ,kn ,kjn ,s1 ,s2 ,s3 ,q!#

2 3
2 a ln 41 3

2 F ln~12q!1
1

12q
1 ln 2pG ~B1!

with

cRS~kj ,kn ,kjn ,s1 ,s2 ,s3 ,q!

5S E
2`

l 1
du1E

l 4

`

du2E
l 5

`

du31E
2`

l 2
du2E

l 6

`

du1E
l 7

`

du3

1E
2`

l 3
du3E

l 8

`

du1E
l 9

`

du2

1E
l 1

`

du1E
l 2

`

du2E
l 3

`

du3D)
r

e2(1/2)ur
2

A2p
~B2!

where
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l i5
Li1si

A12q
, i 51,2,3,

l 45
L11L21s11s2

A12q
2u1 , l 65 l 41u12u2 ,

l 55
L11L31s11s3

A12q
2u1 , l 85 l 51u12u3 ,

l 75
L21L31s21s3

A12q
2u2 , l 95 l 71u22u3 ,

L15
1

2
~kj2kh1kjh!, L25

1

2
~2kj1kh1kjh!,

L35
1

2
~kj1kh2kjh!

andq taking those values that minimizesv. Thus, fork5kj5kh5kjh the maximal capacity in the RS approximation can
written as

aRS~k!5 lim
q→1H 2 ln~12q!2

1

12q
2 ln 2p

E )
r

D~sr~q!!cRS~k,k,k,s1 ,s2 ,s3 ,q!2 ln 4
J .

For the RSB1 approximation with the form of the order parameters given by Eq.~21! the maximal capacity reads

aRSB1~k!5 min
q0 ,MH 2 ln~11M !2

q0M

~11M !~12q0!

E )
r

Dt r ln cRSB1~k,t1 ,t2 ,t3 ,q0 ,M !
J

with cRSB1(k,t1 ,t2 ,t3 ,q0 ,M ) a linear combination of thirty-four, mostly double, integrals over error functions. An intere
reader can find a complete formula forcRSB1(k,t1 ,t2 ,t3 ,q0 ,M ) in @22#.

Finally, the learning algorithms for model I differ in the way that the couplingsJ(1) andJ(2) are updated. We have for th
adaptive Gardner algorithm

Ji
(1)→Ji

(1)1j0
mj i

m 1
2 @~kj2lj

m!Q~kj2lj
m!1~kjh2ljh

m !Q~kjh2ljh
m !#,

Ji
(2)→Ji

(2)1h0
mh i

m 1
2 @~kh2lh

m!Q~kh2lh
m!

1~kjh2ljh
m !Q~kjh2ljh

m !#

instead of Eqs.~24! and ~25! and for the Adatron algorithm we take

dx1
m5 1

4 @max$2x1
m2x3

m ,g~12n1lj
m!%1max$2x1

m2x2
m ,g~12n1ljh

m !%#,

dx2
m5 1

4 ~max$2x2
m2x3

m ,g~12n2lh
m!%1max$2x1

m2x2
m ,g~12n2ljh

m !%!,

instead of Eqs.~28! and ~29!.
@1# E. Gardner, J. Phys. A21, 257 ~1988!.
@2# J. Hertz, A. Krogh, and R.G. Palmer,Introduction to the

Theory of Neural Computation~Addison-Wesley, Redwood
01191
City, 1991!.
@3# B. Müller, J. Reinhardt, and M.T. Strickland,Neural Net-

works: An Introduction~Springer, Berlin, 1995!.
5-7



en

n,
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